Molecular Beacon-Based Microrna Biosensor for Imaging EPC-Treated Cellular Therapy of Ischemia
نویسندگان
چکیده
Angiogenesis, the process of new blood vessel formation, is an important therapeutic target in cardiovascular and malignant diseases for diverse reasons. Molecular imaging for angiogenesis has been attracted due to the use of anti-angiogenic therapeutic drugs to treat tumours, and of therapeutic angiogenesis induction to treat vascular diseases. We developed a novel biosensor of imaging microRNA126 (mir126) expressed during angiogenesis using a miRNA Molecular Beacon (MB) composed of a stem loop-structured DNA complementary to mir126 and Cy5.5 (near infrared, NIR)-black hole quencher 2 (BHQ2) (mir126 NIR MB). Mir126 in cord blood-derived endothelial precursor cells (CB-EPCs) was highly expressed and more expressed after the wound healing. The quantitative and qualitative fluorescence intensity of the mir126 NIR MB was high in CB-EPC and significantly increased after the wound healing, showing a great specificity of sensing endogenous mir126. From the CB-EPC-treated hind limb ischemia, cellular morphology and immune histochemical analysis using antibodies of vWF and CD31 showed a successful induction of angiogenesis and vascularisation and fluorescence signals of the mir126 NIR MB was gradually increased during 6 days of the cellular therapy and much stronger than the signals of laser Doppler imaging. The mir126 NIR MB demonstrated that the mir126sensor will be useful for early diagnosis of cellular therapy of ischemia and non-invasively sensitive imaging for cellular developments, diagnosis of disease and cellular therapy related to the miRNA function.
منابع مشابه
Bioimaging of the microRNA-294 expression-dependent color change in cells by a dual fluorophore-based molecular beacon.
A dual fluorophore-based color-tunable molecular beacon visualized the microRNA-294 expression-dependent color change in cells.
متن کاملDESIGN AND FABRICATION OF ELECTROCHEMICAL BIOSENSOR BASED ON NANO-GRAPHENE TO DETECT SEROTONIN IN DIABETIC ZEBRA FISH
Background: A novel nanocomposite-modified electrode based on reduced graphene oxide (rGO) decorated with crown-ether and gold nanoparticles (GNPs) on the surface of a glassy carbon electrode (GCE) was fabricated to investigate 5-HT determination. Methods: The morphology of nanocomposite was characterized by scaning electron microscopy (SEM). Diabetic zebrafish was obtained by overfeeding via ...
متن کاملCellular response to ionizing radiation: A microRNA story
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that mi...
متن کاملUsing molecular beacons for cancer imaging and treatment.
Molecular beacons are essentially all probes that illuminate particular cellular target or cells with similar characteristics. In this review we focus on those molecular beacons that use near-infrared fluorescence imaging (NIRF-I) to identify the unique cellular and metabolic markers characteristic of cancer. They employ various delivery and activation pathways, selectively or specifically targ...
متن کاملReal-Time Imaging of the Epithelial-Mesenchymal Transition Using microRNA-200a Sequence-Based Molecular Beacon-Conjugated Magnetic Nanoparticles
The epithelial-mesenchymal transition (EMT) plays important roles in tumor progression to metastasis. Thus, the development of an imaging probe that can monitor transient periods of the EMT process in live cells is required for a better understanding of metastatic process. Inspired by the fact that the mRNA expression levels of zinc finger E-box-binding homeobox 1 (ZEB1) increase when cells ado...
متن کامل